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This is the second Mathematics assignment from COMPOS. This assignment is designed to stretch you
and no student is expected to complete all questions on the first attempt. The problems are hard, but
do not let this discourage you. Give each problem a go, and skip to the next one if you are stuck.
The questions in each section are arranged in the order of increasing complexity, so you should try
all sections. Very similar problems will be discussed in webinars on Tuesdays at 6pm, so think of the
questions you would like to ask. Please submit what you have by the deadline, you are allowed to
submit extra work after the review in tutorials. We hope that eventually you will be able to solve most
of the problems. Good luck!

Total 53 marks.

1 The Right-Angle Triangle

To begin, let’s review the fundamental elements and properties of right-angled triangles.

A right-angled triangle is a type of triangle that has one angle measuring exactly 90 degrees. It is characterised
by unique properties and relationships among its elements. The side opposite the right angle, which is also
the longest side in a right-angled triangle, is called the hypotenuse. The two sides adjacent to the right angle
are called legs or catheti.

One of the most famous theorems existing around right-angled triangle is the Pythagoras’ theorem. It states
that in any right-angled triangle, the square of the hypotenuse is equal to the sum of squares of the two legs.
Mathematically, it can be expressed as: c2 = a2 + b2 where c represents the length of the hypotenuse, and a
and b represent the lengths of the legs. There are hundreds of ways to prove Pythagoras’ theorem, some of
which can be found on this brilliant.org page.

Problem 1 (2 marks). Show that in a right-angled triangle with a 30◦ angle, the shortest side is equal to
half of the hypotenuse.
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2 Basic Trigonometric Functions

Trigonometry studies the relationships between angles and sides of right-angled triangles. The three primary
trigonometric ratios are:

sine (sin): the ratio of the opposite side to the hypotenuse;

cosine (cos): the ratio of the adjacent side to the hypotenuse;

tangent (tan): the ratio of the opposite side to the adjacent side.

For a brief overview of these ratios you can watch this Khan Academy video.
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A fundamental property of trigonometric functions is that they are dependent only on the value of the angle.
This is because any two right-angled triangles with the same measure of the acute angles are similar to each
other. For example, if in triangles ABC and A′B′C ′ the angles C and C ′ are 90◦ and the angles A and A′

are equal to θ, these triangles are similar, so the ratios of the sides are the same, e.g.
BC

AB
=
B′C ′

A′B′
= sin θ.

In other words, if we enlarge the triangle, sin, cos and tan of the angles don’t change.
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Let us derive two useful formulas. We’ll start with an important relationship between a sine, a cosine and a
tangent of an angle.

tan θ =
BC

AC
=
BC

AB

/
AC

AB
=

sin θ

cos θ
,

so
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tan θ =
sin θ

cos θ
.

Another formula can be easily obtained from the Pythagoras’ theorem BC2+AC2 = AB2 by simply dividing
both parts by AB2. We find

BC2

AB2
+
AC2

AB2
= 1 ⇒

sin2 θ + cos2 θ = 1.

This is a pivotal finding known as the Pythagorean trigonometric identity, and we will explore its applications
further in this assignment.

Given that we can construct a right-angled triangle for any acute angle, we can assert that the above
equations hold true for all angles between 0◦ and 90◦.

Problem 2 (2 marks). Find sines, cosines and tangents of every acute angle in a:

a) 30◦ − 60◦ − 90◦ right-angled triangle;

b) 45◦ − 45◦ − 90◦ right-angled triangle.

Do not use a calculator.

Example 1. In a right-angled triangle ABC (∠C = 90◦), AB = a and ∠A = θ. Find the lengths of the
remaining two sides of the triangle in terms of a and θ.

Solution:

C

B

A

θ

a

We know that sin θ =
BC

AB
⇒ BC = AB × sin θ = a sin θ

Similarly, cos θ =
AC

AB
⇒ AC = AB × cos θ = a cos θ.

Answer: BC = a sin θ; AC = a cos θ.

Problem 3 (2 marks). In a right-angled triangle ABC (∠C = 90◦), BC = a and ∠A = θ. Find the lengths
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of the remaining two sides of the triangle in terms of a and θ.

Problem 4 (2 marks). The apex angle of an isosceles triangle is β and its base length is a. Find the side
lengths in terms of a and β.

3 Trigonometric Functions of Arbitrary Angles

3.1 Trigonometry without triangles

In this chapter we will introduce a handy and informative instrument, helping us not only to memorise all
the basic concepts of sines, cosines and tangents, but also to develop it further, beyond the geometry of
right-angled triangles.

The first step is to recall that the sine, cosine and tangent are only dependent on the angle’s magnitude and
are hence equal in similar triangles. Therefore we can restrict our analysis to triangles with hypotenuse equal
to 1. If we want to know the properties of trigonometric functions for any other triangle, we can simply find
similar triangle with hypotenuse equal to 1. In other words, we can always scale any right-angled triangle
so that the hypotenuse is 1.

4
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Consider a system of coordinates with the origin O. Let us place an arbitrary right-angled triangle ABC
(∠C = 90◦) with hypotenuse AB = 1 so that A coincides with the origin and AC lies along the x−axis.

x

y

B (cos θ, sin θ)

CA
(0, 0)

1

1

1

cos θ

sin θ

θ

Let us now look at the angle ∠CAB, which we denote as θ. Its sine is equal to sin θ =
BC

AB
. But because

AB = 1, the value of sin θ is equal to the length of BC. Similarly we get that cos θ is equal to the length of
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the leg AB. But we can also notice that, by construction, AC and BC are the x− and y− coordinates of
vertex B. So, these coordinates are (cos θ, sin θ).

Example 2. For a right-angled triangle with side lengths 5, 12, 13 draw its representative with hypotenuse
of length 1 in the coordinate plane and hence find the sines and the cosines of the respective acute angles.

Solution. We have 52 + 122 = 25 + 144 = 169 = 132, so this is indeed a right-angled triangle. The
initial hypotenuse measures 13 units, so we should consider a triangle that is scaled down by a factor of 13.
Therefore, the resulting side lengths are 5

13 and 12
13 , which correspond to the sine and cosine of the smaller

acute angle (4ABC in the figure below). If we are looking at the larger acute angle, we should swap the
sides on the axes. Consequently, the sine and cosine values also switch places (4AB′C ′).

x

y

(0; 0)
A 1

1

B( 12
13 ,

5
13 )

B′( 5
13 ,

12
13 )

C ′ C

1

1

12
13

5
13

θ

Answer:

sin∠BAC = cos∠ABC =
5

13
;

sin∠ABC = cos∠BAC =
12

13
.

Note that in the above example we did not need to know the angle measures to find sin and cos.

Problem 5 (2 marks). Find the coordinates of the points M and N below.

x

y

1

1

(0; 0)
30◦

60◦

30◦

60◦

M

N
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3.2 Trigonometric circle

Now, let’s expand our understanding of sine, cosine, and tangent to angles beyond the range of (0◦, 90◦). To
do this, we’ll consider a unit circle centred at origin, as shown in orange below. This circle is referred to as
the trigonometric circle.

To find the trigonometric functions of a given angle θ, we draw a ray starting from the origin such that the
angle between that ray and the positive x−axis is θ when measured counterclockwise from the x−axis. If
B is the point of intersection between that ray and the trigonometric circle, then the coordinates of B are,
similarly to the case of small angles considered above,

x = cos θ;

y = sin θ.

x

y

O

θ

B(cos θ, sin θ)

sin θ

cos θ

1

x

y

O

θ

B(cos θ, sin θ)

sin θ

cos θ

1

As a result, we can calculate sines and cosines for angles greater than 90◦, surpassing 180◦, and even exceeding
360◦. For the latter, it is worth noting that angles like 35◦ and 395◦ correspond to the same point on the
circle. This is because they differ by 360◦, which is equivalent to one full rotation around the circle.

Moreover, one can define trigonometric functions for negative angles. To work with negative angles, we
simply measure them in the same way as positive angles, but in a clockwise direction from the positive
x−axis. As is evident from the figure below, we have

sin(−θ) = − sin θ;

cos(−θ) = cos θ.
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cos(−θ)

θ

−θ

Problem 6 (2 marks). For some angle θ, sin θ = 4/5 and 90◦ ≤ θ ≤ 180◦. Find cos θ and tan θ.

Example 3. Using the trigonometric circle, find the sine and cosine of the angles 135◦, 180◦, 300◦ and
−30◦.

Solution. See below. For each angle, the coordinates of the point are (cos θ, sin θ). For example, cos(−30◦) =√
3

2

x

y

−30◦

135◦

180◦

300◦ (√
3
2 ,−

1
2

)

(
− 1√

2
, 1√

2

)

(−1, 0)

(
1
2 ,−

√
3
2

)

Problem 7 (2 marks). Complete the table below (all angles are in degrees).

7



−180 −150 −135 −120 −90 −60 −45 −30 0 30 45 60 90 120 135 150 180
sin
cos
tan

Using the data from Problem 7, you should be able to plot the graphs of the three trigonometric functions.
It is a good idea to do this by hand at least once.

−360 −270 −180 −90 90 180 270 360

−1

−0.5

0.5

1

θ

sin θ

−360 −270 −180 −90 90 180 270 360

−1

−0.5

0.5

1

θ

cos θ

−360 −270 −180 −90 90 180 270 360

−2

−1

1

2

θ

tan θ

From these plots we can see some properties of these functions:

• sine and cosine are periodic functions with period 360◦;

• tangent is a periodic function with period 180◦.

• tangent is not defined for θ = −270◦,−90◦, 90◦, 270◦ (this is because tan θ =
sin θ

cos θ
and cos θ = 0 at

these points);

• cosine and sine curves can be converted into each other by a horizontal shift through 90◦.

• sine and tangent are odd functions: sin(−θ) = − sin θ and tan(−θ) = − tan θ;
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• cosine is an even function: cos(−θ) = cos θ.

We will study these notions in more detail in our future assignments on functions.

3.3 The tangent axis

We found that the sine and cosine are interpreted as the coordinates of the corresponding point on the
trigonometric circle. But what about tangent? It turns out that tangent has a nice geometric counterpart.
To obtain it, we should consider a set of right-angle triangles whose adjacent leg, rather than hypotenuse,
has length 1.

x

y

B(1, tan θ)

O(0, 0)

C

1

θ
ta

n
ge

n
ts

B′(1, tan θ′)

θ′

B′′(1, tan θ′′)

θ′′

Examples are shown in the figure above. In triangle OBC, the leg OC adjacent to ∠BOC = θ has length 1,

and hence tan θ =
BC

OC
= BC, which is equal to the y−coordinate of point B. We can hence call the vertical

line at x = 1 — the extension of segment BC — the tangent axis: the y−coordinate of the intersection
between that axis and the ray defining the angle equals the tangent of that angle.

As we can see, the tangent axis also works for angles outside the range [0, 90◦], including negative angles.

4 Trigonometric Transformations

In addition to sine, cosine and tangent, the following trigonometric functions are often used.

• cotangent cot θ =
cos θ

sin θ
=

1

tan θ
;

• secant sec θ =
1

cos θ
;

• cosecant cosec θ =
1

sin θ
.
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Problem 8 (2 marks). By analogy with the tangent axis, introduce the cotangent axis such that a
coordinate of a point on that axis is the cotangent of the corresponding angle.

Problem 9 (2 marks). Plot cot θ for −360◦ < θ < 360◦. For which θ is this function not defined? What is
the period of this function?

Example 4. Show that the following relation holds for all angles at which the relevant trigonometric
functions are defined:

sin2 θ + tan2 θ = sec2 θ − cos2 θ.

Solution. Recalling that tan θ =
sin θ

cos θ
and sec θ =

1

cos θ
, we can rewrite the above relation as

sin2 θ cos2 θ + sin2 θ

cos2 θ
=

1− cos4 θ

cos2 θ
.

Multiplying both sides by cos2 θ, we rewrite this as

sin2 θ(1 + cos2 θ) = 1− cos4 θ.

Next, we recall that cos2 θ + sin2 θ = 1, hence we can express sin2 θ = 1− cos2 θ. Now the relation becomes

(1− cos2 θ)(1 + cos2 θ) = 1− cos4 θ.

This is a manifestation of the familiar identity (a+ b)(a− b) = a2 − b2.

Problem 10∗ (7 marks). Show that the following relations hold for all angles at which the relevant
trigonometric functions are defined:

a)
1 + cot θ

1− cot θ
=

tan θ + 1

tan θ − 1
;

b) tan2 θ − sin2 θ = tan2 θ sin2 θ;

c)∗∗ sin6 θ + cos6 θ − 3

4

(
1

sec2 θ
− 1

cosec2θ

)2

=
1

4
.

Problem 11∗ (4 marks). Simplify the following expressions:

a) sin4 θ + cos4 θ + 2 sin2 θ cos2 θ;

b)
(1 + cot θ)(sec2 θ − 1)

(1 + tan2 θ)cosec2θ
.

Example 5. Let sin θ + cos θ = 1.4. Find sin θ cos θ.

Solution: We have (sin θ + cos θ)2 = sin2 θ + 2 sin θ cos θ + cos2 θ = 1.42 = 1.96. Now recalling that sin2 θ +
cos2 θ = 1, we find 2 sin θ cos θ = 0.96, and hence sin θ cos θ = 0.48.

Problem 12 (2 marks). Let sin θ + cos θ = A. Express sin3 θ + cos3 θ in terms of A.

Problem 13 (2 marks). Express sin θ and cos θ (0 ≤ θ ≤ 90◦) in terms of tan θ.
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5 Trigonometric reduction formulae

In this section, we will study how to express trigonometric functions of large angles, such as 90◦±θ, 180◦±θ,
270◦ ± θ through trigonometric functions of θ. This is useful in many calculations.

Example 6. Express sin (90◦ + θ) and cos (90◦ + θ), where 0 ≤ θ ≤ 90◦, in terms of sin θ and cos θ.

Solution. The answer is self-evident by inspecting the figure below, but let us make a rigorous argument.

x

y

B (cos θ, sin θ)

C

B′ (− sin θ, cos θ) C ′

O(0, 0) 1

1

−1

θ

θ
90◦ + θ

We display both angles θ = ∠BOC and 90◦ + θ = ∠B′OC on a coordinate system, with points B and B′

lying on the trigonometric circle and point C being the projection of B onto the x−axis. Let us define the
point C ′ as the projection of B′ onto the y−axis and consider 4B′OC ′. The angles ∠BOC and ∠B′OC ′

are both equal to θ, and hence the right-angled triangles 4BOC and 4B′OC ′ are congruent (because their
hypotenuses are both of length 1). Therefore BC = B′C ′ and OC = OC ′. But we know that the length of
BC = sin θ is the y−coordinate of point B while the length of B′C ′ is the negative x−coordinate of point B′

and hence B′C ′ = − cos(90◦ + θ). Similarly, OC = cos θ is equal to OC ′, whose length is the y-coordinate
of B′ and hence OC ′ = sin(90◦ + θ). We conclude that

sin(90◦ + θ) = cos θ;

cos(90◦ + θ) = − sin θ.

This result is also manifest from the plots of sine and cosine functions. Indeed, if we shift the sine curve to
the left by 90◦, we obtain the cosine curve. And if we shift the cosine curve to the left by 90◦, we obtain the
negative sine curve.

Problem 14∗ (5 points). Express the sines, cosines, tangents and cotangents of the angles (90◦ − θ),
(180◦ ± θ) and (−90◦ ± θ) in terms of trigonometric functions of angle θ ∈ [0, 90◦]. Make a drawing for each
case.

Note that, although we derived the trigonometric reduction formulae assuming θ to be within the first
quadrant of the trigonometric circle, these formulae apply for any real θ.
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6 Applications of Trigonometry in Geometry

We conclude this assignment with a few elegant geometric problems, where the use of trigonometry may (or
may not) be helpful.

Example 7 (4 marks). In a right-angled triangle with a hypotenuse of length l and an acute angle of 30◦,
a rectangle is inscribed. The length of the rectangle is double its width. The longer side of the rectangle lies
on the hypotenuse, and two other vertices are positioned on the legs. Find the sides of the rectangle.

Solution.

2x

2x

x x

A BK L

N

C

M

30◦ 30◦

Let us denote the short side of the rectangle as x, then the long side is 2x. Defining the points as in the

figure above, we find AK =
NK

tan 30◦
= x
√

3 and LB =
ML

tan 30◦
=

x√
3

. Hence AB = AK + KL + LB =

x
√

3 + 2x+
x√
3

= x
4 + 2

√
3√

3
. Because we are given that the hypotenuse AB = l, we find x =

√
3

4 + 2
√

3
l. We

can simplify this as

x =
1

2

√
3

2 +
√

3
l =

1

2

√
3

2 +
√

3

2−
√

3

2−
√

3
l =

1

2

2
√

3− 3

22 −
√

3
2 l =

2
√

3− 3

2
l.

Problem 15 (3 marks). Two vertices of a square are positioned on the base of an isosceles triangle and
two other vertices on its sides. Find the side of the square if the base of the isosceles triangle is a and its
apex angle is θ.

Example 8. In a right-angled triangle ABC, an altitude CD drawn from the right angle to the hypotenuse
divides the hypotenuse into two segments AD and BD. Show that the length of the altitude is the geometric
mean of the lengths of these two segments, i.e. CD =

√
AD ·BD.

Solution. Let us express the tangents of equal angles ∠DAC = ∠DCB = θ in the right-angled triangles
DAC and DCB correspondingly:

tan θ =
DC

AD
=
BD

DC

Thus, DC2 = AD ×BD.
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B

D

θ

θ

Problem 16 (4 marks). In a right-angled triangle ABC, a perpendicular is drawn from the midpoint M
of the hypotenuse AB. The segment KM of this perpendicular contained within the triangle is equal to c,
and the segment KH, where H is the point of intersection of the extensions of BC and KM , is equal to 3c.
Find the length of the hypotenuse AB.

c

3c

A BM

K

C

H

Problem 17 (4 marks). One side of a triangle has length 2, its adjacent angles are 30◦ and 45◦. Find the
two other sides of the triangle.

Problem 18 (4 marks).

a) The hypotenuse of a right-angled triangle has length a. Find the length of the segment connecting the
apex of the triangle’s right angle and the middle of the hypotenuse1.

b) A kitten is sitting in the middle of a ladder leaning against a wall. The ladder starts to slide along the
wall and the floor. What is the trajectory of the kitten’s movement?

1A segment connecting one of the triangle’s angles and the middle of the opposite side is called a median.
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