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This is the first Physics assignment for Year 11 from COMPOS. This assignment is designed to stretch you and
no student is expected to complete all questions on the first attempt. The problems are hard, but don’t let this
discourage you. Give each problem a go, and skip to the next one if you are stuck. You are encouraged to use the
links and any additional reading to help you, and you can come back and attempt any problem as many times as
you need.

The questions in each section are arranged in order of increasing complexity, so you should try problems in all
sections. Very similar problems will be discussed in our webinars, so think of any questions you would like to
ask and share them in the webinar chat. We hope that eventually you will be able to solve most of the problems.
Good luck!

Total 34 marks.

1 Gases

Solids, liquids and gases make up the three states of matter. We have looked at liquids in the Assignment 01 on
hydrostatics in Y10 and we learned how solids and liquids react to heat in Assignment 10 on thermodynamics. Now
we study the behaviour of gases. We will use concepts of pressure, momentum, energy, and the amount of substance.
The last should be familiar to you from your chemistry lessons on moles and molar masses.

1.1 Boyle’s, Charles’ and Gay-Lussac’s laws

A gas is a state of matter where the particles are very far apart, they move at high speed, and interaction between the
molecules is weak. Thus a gas will expand to fill any volume of a container of any shape, albeit at increasingly lower
density as the volume expands. The behaviour of gases under different conditions has been studied since the 1600s.
Notable advancements have been made by Robert Boyle, followed by French chemists Jacques Charles and Joseph
Louis Gay-Lussac, who discovered the interdependence of the volume, pressure and temperature of a gas. Here are the
modern formulations of these relations.

• Boyle’s Law. For a fixed amount of gas at a fixed temperature, increasing the volume 𝑉 causes the pressure 𝑃
to decrease — theses quantities are inversely proportional.

𝑃 = constant
𝑉

⟹ 𝑃𝑉 = constant.
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• Charles’ Law. For a fixed amount of gas at a fixed pressure, increasing its absolute temperature 𝑇 will propor-
tionally increase its volume 𝑉 .

𝑉 = constant × 𝑇 .

• Gay-Lussac’s Law For a fixed amount of gas at a fixed volume, increasing its absolute temperature 𝑇 will
increase its pressure 𝑃 .

𝑃 = constant × 𝑇 .
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Two of these relationships can be easily demonstrated with a balloon if you tie a good knot such that no gas can enter
or escape. You know that if you squeeze on the sides of a balloon — and thus decrease the volume — the balloon
exerts a force on your hands due to increasing pressure (Boyle’s law: the gas inside is of the same temperature as the
air outside). Increase the pressure too much and the rubber will break!

If you take this balloon and stick it under some ice cold water for a minute or so, such that the air inside has become as
cold as the icy water, and take it back out, you will see the balloon is much smaller than when you put it in (Gay-Lussac’s
law). As the air inside the balloon heats back up, the balloon will slowly expand to its original volume.

To see a manifestation of Charles’ law, measure the tyre pressure of a car before and after a long drive. Driving
(especially the usage of brakes) will heat up the air in the tyres, leading to increased pressure.

Example 1. A bike pump is a vertical cylinder ℎ = 0.5 m high and 𝑟 = 2 cm in radius. Sahir lifts the plunger to its top
position and then plugs the end so no gas can escape. He then releases the plunger. By what distance Δℎ will it sink
under the action of gravity? The mass of the plunger is 𝑚 = 0.5 kg. Assume constant temperature of the air inside the
pump; neglect friction.

Solution: This is an example of Boyle’s Law in action. The initial pressure of the gas inside the cylinder is 𝑃1 = 1
atm = 105 Pa; it is equal to the atmospheric pressure outside. After the plunger is released, it drops a few centimeters,
so the volume inside the cylinder reduces and pressure increases, becoming 𝑃2. The upward force 𝜋𝑟2𝑃2 exerted by
this pressure must be equal to the pressure force exerted by the outside atmosphere 𝜋𝑟2𝑃1 plus the plunger weight 𝑚𝑔.
Hence 𝑃2 =

𝜋𝑟2𝑃1 + 𝑚𝑔
𝜋𝑟2

= 1.04 ⋅ 105 Pa.

The initial and final volumes of the cylinder 𝑉1 = 𝜋𝑟2ℎ and the final volume is 𝑉1 = 𝜋𝑟2(ℎ − Δℎ). Writing Boyle’s
law 𝑃1𝑉1 = 𝑃2𝑉2, we find

ℎ − Δℎ
ℎ

=
𝑃1
𝑃2

, so Δℎ = ℎ
𝑃2 − 𝑃1

𝑃2
= ℎ

𝑚𝑔
𝜋𝑟2𝑃1 + 𝑚𝑔

= 2 cm.
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You can check this result experimentally.

Problem 1 (2 marks). A can of hair spray has a maximum pressure of 3 atm when full at 25°C and the metal container
can withstand up to 3.3 atm internal pressure before bursting. What’s the maximum temperature that a full container
of hair spray can be exposed to before breaking?

1.2 Amount of Substance

Amedeo Avogadro postulated the following principle which has become known as Avogadro’s law: Equal volumes of
all gases at the same temperature and pressure have the same number of molecules.

You will recall from chemistry the concept of the amount of substance, measured in moles. One mole (mol) of any
substance contains the same number of molecules as 12 g of carbon-12, namely Avogadro’s number 𝑁𝐴:

𝑁𝐴 = 6.02 × 1023mol−1.
That is, 𝑛 moles of any substance contain 𝑁 = 𝑛𝑁𝐴 molecules.

Avogadro’s Law can be rephrased as the statement that 1 mole of any gas will have the same volume at standard
temperature and pressure. It then follows that, for a gas at a fixed temperature and pressure, increasing the amount 𝑛
of gas (measured in moles) increases the volume 𝑉 .

𝑉 = constant × 𝑛.

Restated in simple words, this means that two identical balloons contain twice as many molecules as each of them
individually.

Problem 2 (1 mark). Under normal atmospheric conditions, air (mean molecular mass 28.96 amu)1 has a density of
1.293 kg/m3. What volume does 1 mole of air occupy?

Problem 3∗ (4 marks). An adult human breathes in and out 1 litre of air at a time. Estimate how many molecules
from Julius Caesar’s last breath we inhale every time we breathe, assuming that sufficient time has passed for the final
breath to mix evenly throughout the Earth’s atmosphere. You need to make some reasonable assumptions about the
density and depth of the atmosphere.

2 The Ideal Gas Law

In the previous section we introduced four linear relationships between the quantities 𝑉 , 𝑃 , 𝑇 and 𝑛.

We can combine all of these together into a single ideal gas law:
𝑃𝑉 = 𝑛𝑅𝑇 (1)

1Molecular mass is measured in atomic mass units (amu) and it is equivalent to the mass (in grams) of one mole of substance (i.e. 1 amu/molecule
= 1g/mol). It approximately equals to the number of nucleons (protons and neutrons) comprising the molecule. For example, molecular mass of
air is ca. 29 amu because air is 79% N2 (molecular mass 28 amu because each nitrogen atom has 7 protons and 7 neutrons) and 21% O2 (molecular
mass 32 amu because each oxygen atom has 8 protons and 8 neutrons).
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where 𝑅 = 8.31 J K−1mol−1 is called the molar or universal gas constant and is an amalgam of the proportionality
constants from each of the 4 laws. Please convince yourself that Avogadro’s, Boyle’s, Charles’ and Gay-Lussac’s laws
can be derived from the ideal gas law.

Recalling that the amount of substance is related to the number of molecules according to 𝑁 = 𝑛𝑁𝐴, we can modify
the Ideal Gas Law to

𝑃𝑉 = 𝑁𝑘𝑏𝑇 , (2)
where 𝑘𝑏 = 𝑅∕𝑁𝐴 = 1.38 × 10−23 J/K is called the Boltzmann constant.

Underlying this relationship is a set of core assumptions defining the ‘ideal gas’, which we look at in more detail in the
section on Kinetic Theory of Gases below. Real gases deviate from the ideal behaviour, but the ideal gas law works
remarkably well in many cases. Let’s look at some examples.

Example 2. At a temperature of 0◦C and the standard atmospheric pressure of 1.01 × 105 Pa how much space does
one mole of gas occupy?

Solution. We set 𝑛 = 1 mol in the ideal gas law to find the volume 𝑉 :
𝑃𝑉 = 𝑅𝑇 ⟹ 𝑉 = 𝑅𝑇

𝑃
= 2.24 × 10−2 m3 = 22.4 liters.

This result is the same as what you should have obtained from Problem 2 using a slightly different method.

Example 3. A hot air balloon has radius 𝑅 = 10 m and the combined mass of the balloon shell, basket and passenger
is 𝑚 = 100 kg. What temperature does the air inside the balloon need to have for the balloon to start floating? The air
outside the balloon is at room temperature.

Solution. The balloon is acted upon by two forces: gravity and the buoyancy (Archimedes) force. When the balloon is
just about to start floating, these two forces are in equilibrium. The gravity force is (𝑚+𝑚𝑖)𝑔, where 𝑚𝑖 is the mass of
air inside the balloon and 𝑉 = 4

3
𝜋𝑅3 = 4200 m 3 is its volume. As we know from the Y10 Assignment on hydrostatics,

the buoyancy force acting on an object of volume 𝑉 submerged in fluid is 𝐹 = 𝑚𝑜𝑔, where 𝑚𝑜 is the mass of the fluid
displaced by the object, which is equal to the mass of outside air in volume 𝑉 .

We can find 𝑚𝑖 and 𝑚𝑜 from the ideal gas law. The amount of substance of gas in volume 𝑉 is 𝑛 = 𝑃𝑉
𝑅𝑇

. Using
𝑚 = 𝑀𝑛, where 𝑀 = 0.029 kg/mol is the molar weight of air, we find 𝑚𝑖 =

𝑀𝑃𝑉
𝑅𝑇𝑖

and 𝑚𝑜 =
𝑀𝑃𝑉
𝑅𝑇𝑜

, where 𝑇𝑖 and
𝑇𝑜 are the temperatures inside and outside the balloon.

The equilibrium condition is
(

𝑚 + 𝑚𝑖
)

𝑔 = 𝑚𝑜𝑔.
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If 𝑇𝑖 > 𝑇𝑜, we have 𝑚𝑖 < 𝑚𝑜, so the equilibrium is possible. We rewrite the above equation as
𝑚 + 𝑀𝑃𝑉

𝑅𝑇𝑖
= 𝑀𝑃𝑉

𝑅𝑇𝑜
and solve for 𝑇𝑖 assuming 𝑇𝑜 = 20◦C=293 K:

𝑇𝑖 = 𝑇0
𝑀𝑃𝑉

𝑀𝑃𝑉 − 𝑚𝑅𝑇𝑜
≈ 299 K ≈ 26◦C.

Problem 4 (3 marks). An air bubble with a radius of 5.0 mm rises from the bottom of a lake 20 m deep. The
temperature at the bottom of the lake is 7 °C and the temperature at the surface is 27 °C. The atmospheric pressure is
100 kPa. How big will the bubble be when it reaches the surface? The density of water is 1000 kg/m3. [The hydrostatic
pressure at depth ℎ in a liquid of density 𝜌 is 𝑃 = 𝜌𝑔ℎ.]

Problem 5 (3 marks). A heavy piston is in equilibrium in a vertical cylindrical vessel with gas as shown in the diagram.
The mass of the gas and its temperature above and below the piston are the same. The ratio of the volumes of the upper
and lower parts of the cylinder is 3. What will this ratio be if the gas temperature is doubled?

Problem 6∗ (4 marks). Vessel A containing an ideal gas at 300 K and 5.0×105 Pa pressure is connected with a vessel
B by a narrow tube, which is initially shut by a tap. Vessel B has four times greater inner volume and contains the same
gas heated until its temperature is 400 K and a pressure is 1.0 × 105 Pa. How high will the resultant pressure be of the
entire system if we open the tube tap while keeping both vessels at their initial temperatures? Neglect friction.

3 Molecular Kinetic Theory

So far we treated the Ideal Gas Law as an experimental fact. However, it can also be derived theoretically by modeling
the gas as an (ensemble) of molecules flying around with random velocities. This is called the kinetic theory of gases.

We begin developing this theory by defining an ideal gas. The key property of the ideal gas is that the very large
number of identical molecules collide many more times with the walls of the vessel containing the gas than they do
with each other. When collisions occur, they are assumed to be elastic and don’t change the total kinetic energy of the
colliding molecules. vt.physics has a short clip which nicely summarises the assumptions that make up the ideal gas
model.

3.1 Kinetic Interpretation of Pressure

It is perhaps intuitive to think that pressure is due to particles repelling each other. Indeed this was the scientific view
until the 1600s, when the eminent British scientist Robert Hooke (the discoverer of Hooke’s law) realized that pressure
is in fact due to the constant bombardment of molecules against the container walls.
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Consider a gas confined to a cube with sides of length 𝐿2. We will focus on the pressure on the wall perpendicular to
the 𝑥-axis, so molecules move in a positive x direction prior to hitting this wall. When one molecule collides with the
wall, the 𝑦 and 𝑧-components of its velocity which are parallel to the wall remain unchanged but the 𝑥 component will
reverse direction3. In the process, the 𝑥-component of the molecule’s momentum will change according to

𝐼wall = Δ𝑝𝑥 = 𝑝𝑓 − 𝑝𝑖 = (−𝑚𝑣𝑥) − (𝑚𝑣𝑥) = −2𝑚𝑣𝑥

This momentum change equals the impulse exerted on the wall during the collision.

The time interval for the molecule to travel the length of the cube, hit the wall and return is Δ𝑡 = 2𝐿
𝑣𝑥

. Over a long
period of time 𝑡 a single molecule will hit the wall 𝑡

Δ𝑡
times, exerting a total impulse of 𝐼1 = |𝐼wall|

𝑡
Δ𝑡

= 𝑚
𝐿
𝑣2𝑥𝑡. The

total impulse exerted by all 𝑁 molecules over time 𝑡 is then the sum4

𝐼 =
∑

𝐼𝑖 =
𝑚
𝐿

𝑁
∑

𝑖
𝑣2𝑖𝑥𝑡.

These individual impacts occur so frequently that they are perceived as a constant force acting on the wall. As we know,
the impulse produced by force 𝐹 acting during time 𝑡 is 𝐼 = 𝐹 𝑡, so the mean force caused by these impacts equals

𝐹 = 𝐼
𝑡
= 𝑚

𝐿

𝑁
∑

𝑖
𝑣2𝑖𝑥.

Recalling that the wall area is 𝐴 = 𝐿2, we find the pressure of this force:

𝑃 = 𝐹
𝐴

= 𝑚
𝐿3

𝑁
∑

𝑖
𝑣2𝑖𝑥 = 𝑚

𝑉

𝑁
∑

𝑖
𝑣2𝑖𝑥, (3)

because 𝐿 = 𝑉 3 is the cube volume.
2If you prefer listening to reading, the argument below is also presented in this video by vt.physics.
3This sections draws on the idea of vector components which was introduced in Y10 Maths Assignment 04. MIT OpenCourseWare review of

vectors has several short videos which very clearly explain what vector components are.
4Please watch this Khan Academy video if you are not familiar with this summation notation.
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We don’t know the speeds of each individual molecule, 𝑣𝑖𝑥, but as we are dealing with a very large number of molecules
we can make use of an average molecular speed denoted by a bar above the symbol, �̄�. Let’s express the above result
in terms of the mean square velocity which we define as

𝑣2𝑥 =
∑

𝑖
𝑣2𝑖𝑥∕𝑁

of all 𝑁 molecules in the gas. This definition tells us the average velocity in the x-direction of N molecules of this gas.
Substituting into Eq. (3) we obtain

𝑃𝑉 = 𝑁𝑚𝑣2𝑥. (4)
This is starting to look like the ideal gas law in Eq. (2), but to complete the derivation, we need to argue that𝑚𝑣2𝑥 = 𝑘𝐵𝑇 .
A proof of this equality is beyond the school syllabus, but is a consequence of a fundamental fact from thermodynamics,
in thermal equilibrium the total energy of a system is shared equally amongst all the available forms of energy. This is
known as the equipartition theorem:

The mean energy associated with every degree of freedom in any object in thermal equilibrium is 1
2
𝑘𝐵𝑇 .

The number of ways a molecule in a gas can move are called the degrees of freedom. Movement could be translational,
rotational or vibrational. The motion of a molecule in each individual direction — 𝑥, 𝑦 and 𝑧 — is called a degree of
freedom.

Hence the mean kinetic energy for molecules moving in each direction is
1
2
𝑚𝑣2𝑥 = 1

2
𝑚𝑣2𝑦 =

1
2
𝑚𝑣2𝑧 =

1
2
𝑘𝐵𝑇 .

Substituting this into Eq. (4), we obtain the ideal gas law from Eq. (2) 𝑃𝑉 = 𝑁𝑘𝐵𝑇 . This equation is significant
because a macroscopic variable, the pressure, is expressed in terms of a microscopic variable, the root mean square
speed of the molecules. Note that the result does not depend upon the shape of the container, even though we derived
this result assuming it was a cube.

Using our knowledge of vector components we know that velocity of the 𝑖th molecule can be expressed as a sum of the
components in the 𝑥, 𝑦 and 𝑧-directions: 𝑣2𝑖 = 𝑣2𝑖𝑥 + 𝑣2𝑖𝑦 + 𝑣2𝑖𝑧, so an average taken over all molecules will give

𝑣2 = 𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧.

According to the equipartition theorem, this mean square molecular velocity equals

𝑣2 = 3𝑘𝑇
𝑚

. (5)

It is three times the mean square molecular velocity in each dimension.

The quantity 𝑣rms =
√

𝑣2 is know as the root mean square velocity, or rms velocity of the gas molecules.

Problem 7 (1 mark). Show that, for an ideal gas,

𝑃 = 1
3
𝜌𝑣2, (6)

where 𝜌 is the density.
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Problem 8 (2 marks). The speed in m/s of 8 molecules are 200, 400, 500, 500, 800, 900, 1100, and 1500. Find the
average speed and the root mean square speed5.

Problem 9 (2 marks).

a) Find the rms velocity of the air i) N2, ii) O2 molecules under normal conditions.
b) The escape velocity from the surface of the Earth is 11.2km/s. Estimate the temperature at which the following

gases escape from the atmosphere: i) N2, ii) O2, iii) He. Why do you think helium is a non-renewable resource?

Example 4. A round hole of diameter 𝑑 = 1 mm is punched in a car tyre of volume 𝑉 = 10 liters pumped to a pressure
𝑃0 = 3 atmospheres. Estimate how long it will take the air to escape the tyre.

Solution. Consider a short time interval Δ𝑡. For the sake of estimation, we can say that the molecules that escape
the tyre during that interval are initially localized within a cylindrical volume behind the hole with the height of the
cylinder being 𝑣𝑥Δ𝑡, where 𝑣𝑥 is the mean thermal velocity in the outward direction. From the equipartition theorem,
𝑚𝑣2𝑥∕2 = 𝑘𝐵𝑇 ∕2, so 𝑣𝑥 =

√

𝑘𝐵𝑇 ∕𝑚 =
√

𝑅𝑇 ∕𝜇 ≈ 300 m/s and the volume of the cylinder Δ𝑉 = 𝜋𝑑2

4
𝑣𝑥Δ𝑡. Note

that 𝜇 in the previous expression is the molar mass of the gas6.

Amongst all the molecules inside the cylinder, one-half have 𝑣𝑥 in the outward direction, and the other half in the
inward direction (keep in mind that we are only making a rough estimate). Hence the fraction of the molecules that
leave the tyre during time Δ𝑡 is

Δ𝑁
𝑁

∼ 1
2
Δ𝑉
𝑉

∼ 1
2𝑉

𝜋𝑑2

4
𝑣𝑥Δ𝑡.

We can estimate the time it takes the tyre to become empty by setting Δ𝑁 = 𝑁 , in which case

Δ𝑡 ∼ 8𝑉
𝜋𝑑2𝑣𝑥

∼ 80 s.

𝑑

𝑣𝑥Δ𝑡

Problem 10∗ (2 marks). Naturally occurring uranium is a mixture of two isotopes 235U and 238U. The latter is more
abundant with the abundance ratio of 138 (i.e. there is one 235U atom per 138 238U atoms). To produce enriched
uranium7 with a greater fraction of the desirable 235 isotope, the compound UF6 uranium hexaflouride is formed and
the gas is diffused through a porous material. The rate of diffusion is proportional to the rms speed. What is the isotope
abundance ratio in the mixture after the diffusion? The atomic mass of fluorine is 19 amu.

5It is easy to prove that the arithmetic average of any set of numbers cannot exceed its rms average. Try to find the proof as an independent
exercise. Under which condition are the two averages equal each other?

6The molar mass 𝜇 is linked to the mass of a molecule 𝑚 via the equation 𝜇 = 𝑁𝐴𝑚. Another useful equation that was used here is 𝑁𝐴 ×𝑘𝐵 = 𝑅
7Read more about uranium enrichment methods on the web site of the U.S. Nuclear Regulatory Commission.
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Problem 11 (3 marks). A container has two sections separated by a closed valve. Initially, the first section contains a
mixture of hydrogen and helium at equal pressures and the second section is evacuated. The valve is opened briefly, so
small amounts of the two gases leak into the second section. Find the ratio of pressures of the two gases in the second
section after this event.

3.2 Mean Free Path and Brownian Motion

The defining property of an ideal gas is that the molecules don’t interact. Of course, molecules of any real gas do
collide with each other, but one can say that a gas approaches the ideal model behaviour if the molecular mean free
path — the mean distance that a molecule travels between collisions — is much larger than the size of the vessel it
is contained in. The larger the particles or the denser the gas, the more frequent the collisions are and the shorter the
mean free path. If a particle was all by itself, then the mean free path of that particle would be infinite.

This video by Physical Chemistry derives an estimate for a mean free path of a molecule in a gas:

𝜆 =
𝑘𝐵𝑇

√

2𝜋𝑑2𝑃
, (7)

where 𝑑 is the molecular diameter. One must understand that this relation is only an estimate. A molecule is not a solid
sphere but a quantum particle whose wavefunction is smeared in space. Hence even the event of collision is not clearly
defined: strictly speaking, molecules have an effect on each other however far apart they are. Equation (7) estimates
the mean free path of a molecule between events that significantly change the molecule’s velocity vectors.

Problem 12 (1 mark). Estimate the mean free path of an air molecule under normal atmospheric conditions, treating
the molecule as a sphere of 1 nm diameter.

If you did the calculation correctly, you will find the typical mean free path to be very small, meaning that a gas under
normal conditions is far from ideal. Nevertheless, the quantitative results calculated using the ideal gas approximation
work surprisingly well, and predict the properties of much denser gases than the model describes.

Problem 13 (2 marks). Consider an atomic hydrogen gas under normal atmospheric conditions. How long will it take
before 1% of the atoms will pair into molecules H2? Assume that every atomic collision results in emergence of a pair.
The atomic radius can be assumed to equal 0.053 nm (Bohr radius).

Problem 14∗ (4 marks). Estimate the mean free path in a mixture containing two gases. The number densities
(numbers of molecules per unit volume) of the gases are 𝑑1 and 𝑑2, and the molecular radii are 𝑅1 and 𝑅2 respectively.

Hint: The mean free path lengths are different for the molecules of the different gases.
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