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In this assignment we will consider the angular motion of a point particle about an axis, or the motion of an extended
body (which can be modelled as being made of many point particles) about an axis.

Some aspects of rotational motion are really non-intuitive. We recommend watching this Lecture by Walter Lewin to
get a taste of angular motion.

1 Rotational Kinematics

Rotational kinematics have been mostly covered in this Y12 assignment on circular motion. Please study the first section
of that assignment to refresh your knowledge of angular displacement, angular velocity and angular acceleration. You
will recall the analogy between linear and rotational motion. The key quantities correspond as follows:

Linear Motion Rotational Motion
Displacement (𝑥) Angular displacement (𝜃)

Velocity (𝑣) Angular velocity (𝜔)
Acceleration (𝑎) Angular acceleration (𝛼)

𝑂
𝑟

𝜃

𝜔

These parallels allow us to apply intuition and problem-solving techniques from linear motion to rotational motion.
Assuming constant angular acceleration, the kinematic equations of rotational motion are very similar to the linear
kinematic equations (SUVAT equations):
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Rotational Motion Linear Motion
𝜃 = 𝜔0𝑡 +

1
2
𝛼𝑡2 𝑥 = 𝑣0𝑡 +

1
2
𝑎𝑡2

𝜔 = 𝜔0 + 𝛼𝑡 𝑣 = 𝑣0 + 𝑎𝑡
𝜔2 = 𝜔2

0 + 2𝛼𝜃 𝑣2 = 𝑣20 + 2𝑎𝑥

𝜃 = 1
2
(𝜔 + 𝜔0) 𝑥 = 1

2 (𝑣 + 𝑣0)𝑡

Example 1. A spinning disk starts from rest and accelerates uniformly at an angular acceleration of 𝛼 = 4.0 rad∕s2.
How many revolutions will it make in the first 5.0 s, and what is its final rotational frequency?

Solution. We use the angular kinematic equations for constant angular acceleration. The final angular velocity is
𝜔 = 𝜔0 + 𝛼𝑡 = 20.0 rad∕s, which corresponds to the frequency 𝑓 = 𝜔∕2𝜋 = 3.18 Hz. The angular displacement is
given by 𝜃 = 𝜔0𝑡 +

1
2
𝛼𝑡2 = 50.0 rad, i.e. 𝜃∕2𝜋 = 7.96 revolutions.

Problem 1 (2 marks). A jet engine turbine uniformly accelerated from 10 to 100 revolutions per second in 2 seconds.
How many revolutions has it made in the process?

2 Rotational kinetic energy and moment of inertia

Consider a rigid body with some mass distribution rotating about some axis with angular velocity 𝜔. Let us calculate
the total kinetic energy of this rotation, assuming that the object is made up of many small masses 𝑚𝑖. Each such
mass, located at distance 𝑟𝑖 away from the axis of rotation, is moving with speed 𝑣𝑖 = 𝜔𝑟𝑖 and its kinetic energy is
𝑇𝑖 =

1
2
𝑚𝑖𝜔2

𝑖 𝑟
2
𝑖 . The total KE is then 𝑇 =

∑

𝑖
1
2
𝑚𝑖𝜔2𝑟2𝑖 =

1
2
𝜔2∑

𝑖(𝑚𝑖𝑟2𝑖 ).

For a continuous object the sum can be replaced by an integral:

𝐼 =
∑

𝑖
(𝑚𝑖𝑟

2
𝑖 ) → 𝐼 = ∫ 𝑟2d𝑚

Here, 𝑟 is the perpendicular distance from the axis of rotation to an infinitesimal1 mass element 𝑑𝑚. This integral
depends on the shape and mass distribution of the object and is referred to as the moment of inertia of the object. The
kinetic energy then becomes

𝑇 = 1
2
𝐼𝜔2. (1)

Comparing this with the KE for translational motion, 𝑇 = 1
2
𝑚𝑣2, and recalling that the angular velocity 𝜔 is the

analogue of velocity 𝑣 of translational motion, we conclude that the moment of inertia is the rotational analogue of
mass 𝑚. It is the physical quantity that characterizes the rotational inertia of a body about a given axis.

Problem 2 (2 marks). A rigid body is mounted on a horizontal axis passing through its centre of mass. A light drum
of radius 𝑟, rigidly attached to the body, is mounted on the same axis. A weight of mass 𝑚 is suspended from the free
end of a string wound around the drum. The weight, some time after having been released from rest, has descended a
distance ℎ and reached a velocity 𝑣. Find the moment of inertia of the body.

1Infinitely small.
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𝑔

𝑟

𝑚

Example 2. Find the moment of inertia of a thin ring of mass 𝑀 and radius 𝑅 rotating around the axis passing through
its centre orthogonally to its plane.

Solution. The orbit of each point of the ring has radius 𝑅. Hence the formula for the moment of inertia can be applied
trivially:

𝐼 = ∫ 𝑟2d𝑚 = 𝑅2
∫ d𝑚 = 𝑅2𝑀.

Example 3. Find the moment of inertia of a uniform thin disk of mass 𝑀 and radius 𝑅 rotating around the axis passing
through its centre orthogonally to its plane.

Solution. Now the situation is less trivial, because the radii 𝑟 associated with different elements of the disk are different.
Let us divide the disk into a set of small rings of radius 𝑟 and infinitesimal width d𝑟. The area density of the disk is
𝑀∕𝜋𝑅2, hence the mass of each infinitesimal ring is its area 2𝜋𝑟d𝑟 times this density: d𝑚 = 2𝑀𝜋𝑟d𝑟

𝜋𝑅2
= 2𝑀𝑟d𝑟

𝑅2
.

Hence
𝐼 = ∫ 𝑟2d𝑚 = ∫

𝑅

0

2𝑀𝑟3

𝑅2
d𝑟 =

[

2𝑀𝑟4

4𝑅2

]𝑅

0
= 𝑀𝑅2

2
.

We see that the moment of inertia of a disk is less than that of a ring of the same mass and same radius. This is not
surprising: while in a ring all points move with the same linear velocity 𝜔𝑅, points in the body of the disk move with
smaller velocities, resulting in a smaller total kinetic energy (assuming that the disk and the ring are rotating at the
same 𝜔).

It is also easy to see that the thickness of the disk does not matter: the same formula will apply if the disk is replaced
by a long cylinder.

Problem 3 (2 marks). Show that the moment of inertia of a uniform thin rod of mass 𝑚 and radius 𝑅 rotating around
the axis passing through its centre orthogonally to it is 𝑀𝐿2∕12.

Problem 4 (3 marks). Show that the moment of inertia of a uniform thin disk of mass 𝑀 and radius 𝑅 relative to the
axis, which contains the diameter of the disk, is 𝑀𝑅2∕4.

Hint: if you are struggling with the integral, try introducing a variable 𝜃 such that 𝑟∕𝑅 = sin 𝜃.

The table below shows the moments of inertia for common solid bodies. Try deriving them independently.
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Object Axis of Rotation Moment of Inertia

Point mass Distance 𝑟 from mass 𝑚𝑟2

Thin rod Through centre, perpendicular to rod 1
12𝑀𝐿2

Solid cylinder Cylinder axis 1
2𝑀𝑅2

Solid thin disk Diameter 1
4𝑀𝑅2

Solid sphere Diameter 2
5𝑀𝑅2

Hollow sphere Diameter 2
3𝑀𝑅2

Rectangular plate 𝑎 × 𝑏 Through centre, perpendicular to plane 1
12𝑀(𝑎2 + 𝑏2)

If 𝐼cm is the moment of inertia of a body about an axis through its centre of mass, then the moment of inertia about a
parallel axis a distance 𝐷 away is:

𝐼 = 𝐼cm +𝑀𝐷2

This result is known as the parallel axis theorem (Huygens–Steiner theorem) and is frequently used when calculating
rotational inertia about different axes. Its proof can be found in many online sources, for example in this video by Jason
Zhu.

Problem 5 (2 marks). Find the moment of inertia of a thin uniform rod of about the axis passing through its end
orthogonally to it

a) from the first principles;
b) using the parallel axis theorem.

Check that your results are consistent.

Example 4. A solid uniform sphere (mass 𝑚, radius 𝑅) is rolling without slipping on a horizontal surface with centre-
of-mass speed 𝑣. It then encounters a rough incline of angle 𝜃 and rolls up the slope (no energy is lost to frictional
dissipation; static friction only enforces rolling without slipping). What distance 𝑠 measured along the slope will the
sphere travel before coming momentarily to rest?

𝜃

𝑣
𝑠

Solution. Because there is no dissipative friction, mechanical energy is conserved. The initial kinetic energy (transla-
tional + rotational) is converted into gravitational potential energy at the maximum height.

For a rigid body rolling without slipping,
𝜔 = 𝑣

𝑅
,

where 𝑣 is the speed of the centre of mass and 𝜔 the angular speed. The moment of inertia of a solid sphere about its
centre is

𝐼 = 2
5
𝑚𝑅2.
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Total kinetic energy initially:

𝐾initial =
1
2
𝑚𝑣2 + 1

2
𝐼𝜔2 = 1

2
𝑚𝑣2 + 1

2

(2
5
𝑚𝑅2

)

(

𝑣2

𝑅2

)

= 1
2
𝑚𝑣2 + 1

5
𝑚𝑣2 = 7

10
𝑚𝑣2.

Let the ball climb a distance 𝑠 along the slope. The vertical rise is
ℎ = 𝑠 sin 𝜃.

At the turning point the sphere’s kinetic energy is zero and its gain in gravitational potential energy is
Δ𝑉 = 𝑚𝑔ℎ = 𝑚𝑔𝑠 sin 𝜃.

Applying energy conservation, we find
𝑠 = 7

10
𝑣2

𝑔 sin 𝜃.

Equivalently the maximum vertical rise is ℎmax = 7
10

𝑣2

𝑔 . The factor 7∕10 reflects the partition of energy between
translation and rotation for a solid sphere. If the object were sliding without rotation (or a point mass), the result would
be ℎ = 𝑣2∕(2𝑔) and 𝑠 = 𝑣2∕(2𝑔 sin 𝜃).

Problem 6 (2 marks). A solid ball, a hula-hoop and a hollow ball (shell) are rolling at constant speed when they
encounter a rough inclined plane. Find the ratio of the distances travelled by each object up the slope before momentarily
coming to rest. Does this distance depend on the radii or masses?

Problem 7∗ (3 marks). A thin-walled cylinder is spinning with angular velocity 𝜔. It is placed next to a wall so that
there is friction between the cylinder and both the wall and floor. The coefficient of friction is 𝜇. Find the number of
complete rotations of the cylinder before stopping.

𝜔

3 Torque

Let us now derive the analogue of Newton’s Second Law for rotation.

𝜔
𝜋
2 − 𝜑

𝜑

𝑂

𝑟 𝐹
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Consider an external force acting in such a way that it always makes the same angle 𝜑 with the radius-vector 𝑟 of the
application point of the force. In other words, the force “rotates” with the object. To calculate the work done by such
a force, we recall that the path travelled by the point where the force is applied is always perpendicular to the radius,
i.e. at angle 𝜋

2
− 𝜑 to the force:

𝑊 = 𝐹𝑠 cos
(𝜋
2
− 𝜑

)

= 𝐹𝑠 sin𝜑.

The distance travelled by the force is 𝑠 = 𝜃𝑟, where 𝜃 is the angular displacement, so the work done is
𝑊 = 𝐹𝑟 sin𝜑 × 𝜃 = 𝜏𝜃,

where 𝜏 = 𝐹𝑟 sin𝜑 is the moment of the force, or torque,2 familiar to you from GCSE physics classes and the Y10
assignment on simple mechanisms. Drawing again the analogy with the work in translational motion, 𝑊 = 𝐹𝑠,
and recalling that angular displacement 𝜃 is the analogue of linear displacement 𝑠, we conclude that the torque is the
rotational equivalent of linear force.

3.1 Newton’s Second Law for rotational motion.

Suppose we apply a torque 𝜏 to an object with moment of inertia 𝐼 rotating freely around some axis. What will be its
angular acceleration 𝛼?

Suppose the object is initially rotating around a fixed axis with angular velocity 𝜔0. We apply the torque for time 𝑡,
after which its angular velocity becomes 𝜔1. From the Work-Energy principle we know that the change in the kinetic
energy equals the work done by the torque:

𝑇1 − 𝑇0 = 𝑊 .

1
2
𝐼𝜔2

1 −
1
2
𝐼𝜔2

0 = 𝜏𝜃.

Dividing both sides by 𝐼∕2 and making 𝜔2
1 the subject, we obtain

𝜔2
1 = 𝜔2

0 + 2 𝜏
𝐼
𝜃,

which is the same form as the equation of kinematics (see the second table in Sec. 1) 𝜔2
1 = 𝜔2

0 + 2𝛼𝜃. Comparing the
two equations we can see that

𝜏 = 𝐼𝛼 (2)

where 𝜏 is the net torque, 𝐼 is the moment of inertia, and 𝛼 is the angular acceleration. We have obtained Newton’s
Second Law for rotational motion, whose equivalent in translational dynamics is the familiar 𝐹 = 𝑚𝑎.

To summarise the above discussion, here is a table of related quantities for rotational and translational motions.
2The moment of force is sometimes defined as 𝜏 = 𝐹𝑟⟂, where 𝑟⟂ = 𝐹 sin𝜑 is the component of the radius that is perpendicular to the force.
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Comparison with Linear Dynamics

Linear Quantity Rotational Analogue
Force 𝐹 Torque 𝜏 = 𝑟𝐹 sin 𝜃
Mass 𝑚 Moment of inertia 𝐼 = ∫ 𝑟2 𝑑𝑚
Acceleration 𝑎 Angular acceleration 𝛼 = 𝑑𝜔

𝑑𝑡Momentum 𝑚𝑣 Angular momentum 𝐼𝜔
Newton’s Second Law 𝐹 = 𝑚𝑎 𝜏 = 𝐼𝛼
Work 𝑊 = 𝐹𝑑 𝑊 = 𝜏𝜃
Kinetic energy 𝑇 = 1

2𝑚𝑣
2 𝑇 = 1

2𝐼𝜔
2

Power 𝑃 = 𝐹𝑣 𝑃 = 𝜏𝜔

Problem 8 (2 marks). A flywheel of mass 𝑚 in the shape of a ring of radius 𝑅 with light spokes is initially spun at
angular velocity 𝜔 and subsequently stops and due to friction. Find the torque of the friction force if:

a) the flywheel stopped after time 𝑡;
b) the flywheel did 𝑁 complete revolutions before stopping;

Example 5. Two masses 𝑚1 and 𝑚2 are connected by a light, inextensible string that runs over a pulley of mass 𝑀 and
radius 𝑅. The pulley is a solid uniform cylinder. There is no slipping between the string and the pulley. Find the linear
acceleration 𝑎 of the masses. Assume 𝑚2 > 𝑚1.

∙

𝑇1
𝑇2

𝑚1𝑎

𝑚2 𝑎

Solution. Choose signs and coordinates as follows:

• Let the upward direction for 𝑚1 be positive. Since 𝑚2 > 𝑚1, 𝑚1 accelerates upward with magnitude 𝑎.
• For 𝑚2 take downward as positive (so it accelerates downward with magnitude 𝑎).
• The pulley rotates with angular acceleration 𝛼. No slip gives 𝛼 = 𝑎∕𝑅.

Let 𝑇1 and 𝑇2 be the tensions in the two segments of string. Note that tensions are different — otherwise there would
be no torque on the pulley and it won’t turn. The equations for Newton’s Second Law for the two masses are then

𝑇1 − 𝑚1𝑔 = 𝑚1𝑎;
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𝑚2𝑔 − 𝑇2 = 𝑚2𝑎.

Let us now write the rotational equivalent of Newton’s Second Law for the pulley. Tensions on the two sides exert a net
torque (𝑇2 − 𝑇1)𝑅 (positive when 𝑇2 > 𝑇1, corresponding to 𝑚2 going down). The angular acceleration is 𝛼 = 𝑎∕𝑅.
Hence

(𝑇2 − 𝑇1)𝑅 = 𝐼 𝑎
𝑅
.

Substituting 𝑇1 and 𝑇2 from the first two equations into the third one, we have

(𝑚2 − 𝑚1)𝑔 − 𝐼
𝑅2

𝑎 = (𝑚1 + 𝑚2)𝑎.

For the given solid uniform cylindrical pulley 𝐼 = 1
2𝑀𝑅2, so 𝐼∕𝑅2 = 1

2𝑀 . Substituting,

𝑎 =
(𝑚2 − 𝑚1) 𝑔

𝑚1 + 𝑚2 +
1
2𝑀

.

Problem 9 (3 marks). Solve Example 5 using the work-energy principle.

Problem 10 (4 marks). In the figure below, the green and red pulleys are glued together while the blue and red pulleys
do not slide with respect to each other due to strong friction. All three pulleys are solid cylinders with parameters as
shown. Find the acceleration of the system.

∙ ∙

𝑚

𝑚

𝑟

3𝑟

2𝑟

𝑚 𝑚

2𝑚

Problem 11 (MIPT, 4 marks). A tall and thin uniform pole of length 𝑙 is falling, with its bottom pivoting on the
ground. Find the angular acceleration 𝛼 and the angular velocity 𝜔 in terms of the instantaneous angle 𝜃 between the
pole and the vertical.

Problem 12∗ (MIPT, 4 marks). A tall tree of height 𝐻 = 28 m and mass 𝑚 = 1000 kg has the shape of a circular
cone. The tree is cut down and starts to fall. Find the kinetic energy of the tree as it lifts off the stump. Assume that
the tree is pivoting on the stump with the centre of the circular cross-section touching the edge of the stump. The tree
lifts off when the component of the reaction force along the trunk is zero.
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𝑂

𝜃

𝑔

In the problems above, the axis of rotation is well-defined. But what if there is no such axis? Situations like this are
common: for example, a football rolling on a field or a spaceship changing its orientation in space.

In cases like this, you can still apply the techniques we developed, but you need to choose the axis — an imaginary line
around which the object rotates. This choice is not trivial. The arguments we made above, like all mechanics studied so
far, are valid in inertial reference frames. Hence the axis chosen needs to represent such a frame: it must be stationary
in space or move with a constant velocity.

Fortunately, it is allowed for such an axis to be instantaneous. For example, if a football is rolling without sliding, its
bottom point is instantaneously stationary: it is not moving with respect to the ground. So we can apply the torque
rules around this axis3.

But what if there is no obvious axis that is instantaneously stationary? In this case, we can also use the line passing
through the centre of mass of the rotating object, even if it is not an inertial reference frame. The proof of this statement
requires the use of the vector cross product and can be found in the Appendix.

Example 6. A solid sphere of mass 𝑀 and radius 𝑅 is released from rest and rolls without slipping down an incline
angled at 𝜃 to the horizontal. Find the linear acceleration 𝑎 of the centre of the sphere.

Solution. We will solve the problem using three methods.

Method 1. The horizontal line passing through the point where the sphere touches the incline (marked red in the
diagram) is the instantaneous rotation axis. Let us write the rotational equivalent of Newton’s Second Law with respect
to this axis.

There are three forces acting on the sphere: gravity 𝑀𝑔, normal reaction 𝑁 and friction 𝑓 . The latter two happen to
be applied at the touching point, so their torque is zero. The gravity force is applied at the sphere’s centre, distance 𝑅
away from the axis, so its torque is 𝜏 = 𝑀𝑔𝑅 sin 𝜃.

The moment of inertia of a solid sphere around its centre is 2
5
𝑀𝑅2. To find its moment of inertia around the instanta-

neous rotation axis, we apply the parallel axis theorem: 𝐼 = 2
5
𝑀𝑅2 +𝑀𝑅2 = 7

5
𝑀𝑅2.

Finally, notice that the angular acceleration 𝛼 around the instantaneous rotation axis equals 𝛼 = 𝑎∕𝑅, where 𝑎 is the
linear acceleration of its centre that we aim to find.

3There is a subtlety: even though the bottom point of the ball is not moving, it is still experiencing normal acceleration. So, strictly speaking, it is
not an inertial reference frame. However, normal force is perpendicular to the trajectory and hence does no work, so our derivation of the rotational
equivalent of Newton’s Second Law is not affected. Alternatively, one can say that the instantaneous axis is not the bottom point of the wheel, but
the point on the road directly underneath it — which is stationary.
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Putting it all together, we have

𝜏 = 𝐼𝛼 ⇒ 𝑀𝑔𝑅 sin 𝜃 = 7
5
𝑀𝑅2 𝑎

𝑅
⇒ 𝑎 = 5

7
𝑔 sin 𝜃.

𝜃 𝑚𝑔

𝑁

𝑓
𝜏

Method 2. Let us instead choose the sphere’s centre as the axis. Now the torques of gravity and normal reaction forces
vanish, but the friction has non-zero torque 𝜏 = 𝑓𝑅. This torque causes the acceleration

𝜏 = 𝐼𝛼 = 2
5
𝑀𝑅2 × 𝑎

𝑅
,

so
𝑓 = 2

5
𝑀𝑎.

Now we have two unknowns (𝑎 and 𝑓 ) abut only one equation. An additional equation comes from Newton’s 2nd Law
for the ball’s translational motion (which holds in spite of the rotation!). Along the incline:

𝑀𝑔 sin 𝜃 − 𝑓 = 𝑀𝑎

Solving for 𝑎, we find
𝑎 = 5

7
𝑔 sin 𝜃

We see that the acceleration is less than 𝑔 sin 𝜃 we would have seen if the sphere were replaced by a frictionless solid
block. To understand the nature of this discrepancy (and also to dispel doubts if you are uncomfortable with the previous
arguments), let us solve the same problem using energy considerations.

Method 3. Suppose the sphere rolled for time 𝑡 with acceleration 𝑎. This means that it gained a velocity 𝑣 = 𝑎𝑡 and
travelled a distance 𝑠 = 𝑎𝑡2

2
. The potential energy due to gravity has decreased by 𝑀𝑔𝑠 sin 𝜃. The kinetic energy due

to translational motion is 𝐾𝑡 =
1
2
𝑚𝑣2. In addition, there is kinetic energy due to the sphere’s rotation about its centre

of mass: 𝐾𝑟 =
1
2
× 2
5
𝑀𝑅2 ×𝜔2, where the angular velocity 𝜔 = 𝑣

𝑅
because the sphere rolls without sliding. The total

kinetic energy is hence
𝐾 = 𝐾𝑡 +𝐾𝑟 =

1
2
𝑀𝑣2 + 1

5
𝑀𝑅2 𝑣2

𝑅2
= 7

10
𝑀𝑣2.

Applying energy conservation, we obtain
𝑀𝑔𝑠 sin 𝜃 = 7

10
𝑀𝑣2.

Using the SUVAT relation 𝑣2 = 𝑣20 + 2𝑎𝑠 with 𝑣0 = 0, we find

𝑎 = 𝑣2

2𝑠
= 5

7
𝑔 sin 𝜃.
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We see that the acceleration is reduced in comparison to frictionless sliding because because some energy goes into
rotation. You will recall a demonstration to this effect in the Lecture by Walter Lewin you watched in the beginning of
the assignment.

Problem 13 (3 marks). A solid ball or radius 𝑅 and mass 𝑚 is spun to angular velocity 𝜔 around a horizontal axis and
placed on a rough horizontal surface. The ball first accelerates, and then starts to roll. Find the final speed of the ball
once it is rolling without slipping.

Problem 14 (2 marks). Find the maximum angle of the incline such that a hollow ball (e.g. a basketball) will roll
down without slipping. The friction coefficient is 𝜇.

Problem 15 (Savchenko, 3 marks). A thin-walled cylinder has a thread wound around it. The other end of the thread
fixed so that, as the cylinder slips down an inclined plane, the thread remains parallel to the plane. What speed does
the cylinder acquire after its axis has travelled a distance 𝑙 from rest? The inclination angle of the plane is 𝜃 and the
coefficient of friction between the plane and the cylinder is 𝜇.

𝑔

𝜃

4 Angular Momentum

By analogy with the momentum 𝑚𝑣 in translational motion, we can define angular momentum for rotational motion:
𝐿 = 𝐼𝜔. (3)

Differentiating both sides of (3) with respect to time, and using the rotational equivalent (2) of Newton’s Second Law,
we obtain

𝑑𝐿⃗
𝑑𝑡

= 𝐼 ̇⃗𝜔 = 𝐼𝛼⃗ = 𝜏, (4)
so the change in the angular momentum equals the impulse of the torque. If no net torque is acting on the system, or
if we observe the system for a short enough time to make the torque impulse insignificant, the angular momentum is
conserved4:

𝐿⃗initial = 𝐿⃗final. (5)
This conservation law is a cornerstone of mechanics.

Example 7. This example refers to this video by OpenStax. A figure skater is spinning with her arms outstretched.
She has an initial moment of inertia of 𝐼1 = 4.0 kg ⋅m2 and an initial angular velocity of 𝜔1 = 2.0 rad∕s. When she
pulls her arms inward, her moment of inertia decreases to 𝐼2 = 2.0 kg ⋅m2. What is her final angular velocity 𝜔2?

4You may wish to refresh your memory of the Y12 assignment on momentum to see the analogy in the argument.
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𝜔1

𝜔2

Arms Extended Arms Pulled In

Solution. Since there is no external torque acting on the skater, angular momentum is conserved:
𝐿1 = 𝐿2 ⇒ 𝐼1𝜔1 = 𝐼2𝜔2.

Solving for 𝜔2:
𝜔2 =

𝐼1𝜔1
𝐼2

= 4.0 × 2.0
2.0

= 4.0 rad∕s.

It is interesting to look at her initial and final rotational kinetic energies. These energies are different: 𝐾1 =
1
2
𝐼1𝜔2

1 =

8.0 J and 𝐾2 = 1
2
𝐼2𝜔2

2 = 16.0 J. How is this possible when there is no net torque to do the work? The answer is that
she does the work while pulling her arms in. More precisely, the work is done by the centripetal force acting on her
arms while she is spinning.

Problem 16 (3 marks). Between 1992 and 2020, polar ice sheets (including Antarctica and Greenland) lost a combined
7,560 billion tonnes of ice. Estimate the resulting change in the duration of the day.

Problem 17 (Savchenko, 3 marks). A bullet of mass 𝑚2, moving with speed 𝑣, hits a wooden cylinder of mass 𝑚1,
as shown in the diagram, and sticks therein. Assuming 𝑚2 ≪ 𝑚1, determine the linear and angular velocities of the
cylinder immediately after the impact.

𝑅ℎ
𝑣𝑚2

𝑚1

Problem 18 (Savchenko, 3 marks). A hoop of radius 𝑅 spinning in the vertical plane falls vertically onto a horizontal
plane and bounces off it with speed 𝑣 at an angle of 30°, no longer spinning. What was the angular velocity of the hoop
before the impact?
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Appendix. Why centre of mass can be used as axis in torque problems.

We will be using the cross product and its properties, which will be studied in detail in a future assignment on 3D
geometry. Let us suppose the angular acceleration is 𝛼⃗. Then the linear acceleration of a given point of the object
with the radius-vector 𝑟 with respect to the centre of mass is a vector sum of the centre-of-mass-acceleration 𝑎 and the
acceleration 𝛼 × 𝑟 due to the angular acceleration. If 𝛼 ≠ 0, there will be some point 𝐴, with the radius-vector 𝑟0, in
which these two accelerations cancel each other. This point is the instantaneous axis of rotation, and we can write

𝛼⃗ =
𝜏𝐴

𝐼 +𝑀𝑟20
, (6)

where 𝐼 is the moment of inertia around the centre of mass (so 𝐼 +𝑀𝑟20 is the moment of inertia around 𝐴) and 𝜏𝐴 is
the torque around 𝐴.

Let us relate 𝜏𝐴 and the torque 𝜏CM around the centre of mass. Suppose the object is acted upon by several forces 𝐹𝑖applied at points with radius-vectors 𝑟𝑖 with respect to the centre of mass. Then the radius-vector of each such point
with respect to point 𝐴 is 𝑟𝑖 − 𝑟0, so

𝜏CM =
∑

𝑖
𝑟𝑖 × 𝐹𝑖

and
𝜏𝐴 =

∑

𝑖
(𝑟𝑖 − 𝑟0) × 𝐹𝑖 =

∑

𝑖
𝑟𝑖 × 𝐹𝑖 − 𝑟0 ×

∑

𝑖
𝐹𝑖 = 𝜏CM − 𝑟0(𝑀𝑎),

where 𝑎 =
∑

𝑖 𝐹𝑖∕𝑀 is the linear acceleration of the centre of mass.

We now notice that the difference between the accelerations of𝐴 and the centre of mass is 𝑎𝐴 − 𝑎 = 𝛼⃗ × 𝑟0. Because
point 𝐴 is not accelerating, we have 𝑎 = 𝑎 − 𝑎𝐴 = −𝛼⃗ × 𝑟0. Hence

𝜏𝐴 = 𝜏CM +𝑀𝑟0 × [𝛼⃗ × 𝑟0].

Using properties of the cross product,
𝑟0 × [𝛼⃗ × 𝑟0] = 𝛼⃗ ⋅ (𝑟0 ⋅ 𝑟0) − 𝑟0 ⋅ (𝛼⃗ ⋅ 𝑟0) = 𝛼⃗𝑟20.

The last equality is valid because 𝛼⃗ ⟂ 𝑟0, so 𝑟0 ⋅ (𝛼⃗ ⋅ 𝑟0) = 0. Putting it all together into Eq. (6), we find

𝛼⃗ =
𝜏CM +𝑀𝛼⃗𝑟20
𝐼 +𝑀𝑟20

⇒ 𝛼⃗𝐼 + 𝛼⃗𝑀𝑟20 = 𝜏CM +𝑀𝛼⃗𝑟20 ⇒ 𝛼⃗ =
𝜏CM
𝐼

,

meaning that we can use the rotational equivalent of Newton’s Second Law to rotation around the centre of mass.
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